

The Battery Technology Landscape

Primer Presentation to TPG Rise Climate

April 27, 2023

Caroline Mazur-Sarocka Investment Analyst cam27@rice.edu **Davis Thames** Technical Analyst hdt1@rice.edu Shikhar Verma Portfolio Manager sv34@rice.edu

I.	Battery Technology Industry Overview	3
II.	How Lithium-Ion Batteries Work	4
III.	Types of Lithium-Ion Batteries	5
IV.	Future Battery Technology Trends	6
V.	Market Segmentation of Lithium-Ion Batteries	7
VI.	Commodity Outlook	8
VII.	Battery Technology Future Growth Prospects	9
VIII.	Lithium-Ion Battery Recycling Overview	11
IX.	Regulatory Overview	12
Χ.	Public Markets Coverage	13
XI.	Appendix	16

Battery Technology Industry Overview

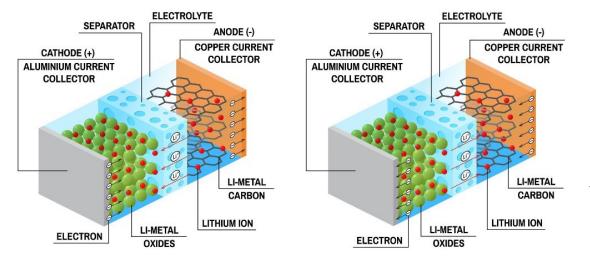
Lithium-ion battery technology is becoming ubiquitous and sodium-ion and solid-state show promise for the future

- The historically prominent lead-acid, nickel-cadmium, and nickel-metal hydride batteries are being phased out by lithium-ion, sodium-ion, and solid-state batteries in battery electric vehicle (BEV) applications and flow batteries complemented by supercapacitors in energy storage system (ESS) applications
- Within BEVs, the current focal point is how the development of traditional lithium-ion, sodium-ion, and solid-state lithium-ion battery technologies will shape the market

Battery Type	Application	Advantages	Disadvantages
Lead-Acid	 First type of rechargeable battery ever created Low energy density relative to modern counterparts Automobile starting, lighting, and ignition (SLI) batteries 	Relatively low cost, widely availableHigh discharge current	 Heavy and bulky, largely impractical for portable applications Limited cycle life, maintenance requirements
Nickel-Cadmium	 Primarily in consumer portable electronics Historically in hybrids and EVs, have since been replaced by lithium-ion and nickel-metal hydrides 	 High discharge rate High durability and wide temperature range Low level of leakage and failure rate 	 Toxicity of cadmium "Memory effect": loss of capacity if not fully discharged, high self-discharge rate
Nickel-Metal Hydride	 Higher energy density relative to NiCad Popular replacement for NiCad in hybrid EVs, consumer electronics, and power tools 	 No cadmium, a toxic heavy metal No "memory effect": no loss of capacity if not fully discharged 	 Lower voltage than NiCad Higher self-discharge rate Limited availability, higher cost
Traditional Lithium-Ion	 Hybrids and EVs Portable electronics Renewable energy storage across wind and solar 	 High energy density Low self-discharge rate, fast charging Long cycle life 	 High cost Flammability Limited shelf life: periodic recharge needed
Sodium-Ion	 Structurally & functionally same to lithium-ion, but use sodium ions instead of lithium ions Large-scale energy storage applications 	 Cost-effective: sodium is abundant and cheap Safer: less reactive than lithium 	Lower energy densityLow cycle lifeLimited commercial availability
Solid State Lithium-Ion	 Type of lithium-ion battery that uses solid electrolyte rather than liquid EVs and consumer electronics 	 Higher energy density Faster charging Safer: less prone to overheating and fire 	 Expensive manufacturing High manufacturing precision requirements Limited commercial availability
Flow	 Grid energy storage and integration Microgrids and off-grid applications 	 Scalable by varying electrolyte tank size Long cycle life, high efficiency Safe: electrolytes are non-flammable 	 Complexity requires expensive mechanical components to circulate the electrolyte Low energy density, limited temperature
Supercapacitors	 Short-term energy storage, high power output Hybrids and EVs Backup power 	 Long cycle life High power density, fast charging/discharging Wide operational temperature range 	 Low energy density, storage, and high cost Voltage limitations, cannot provide continuous power

The Basic Working Principle

- The thermodynamically stable state for most metals is a metal oxide
 - For lithium, this is a lithium oxide which can include other elements as well that impact the stability
- Energy is released when a more thermodynamically stable state forms as it takes energy to form an unstable state
- The basic working principle of a battery is:
 - Charging forms the unstable state (Li ion graphite matrix) while discharging forms the Li oxide
 - The Li must migrate from the carbon to the oxide to discharge, however, the Li metal is not mobile, but Li ions are
 - Li must lose an electron to become an ion, and thus become mobile
 - · Li ion regains electron and then goes back to the metal


Roles of the Components

- Separator
 - Allows ion transfer but has no electrical conductance allowing for easier ion flow and improved battery performance
 - Allowing electrical current would short circuit the battery leading to thermal runaway
- Electrolyte
 - Enables both ion and electron flow
 - Can be liquid, gel, or dry polymer with liquid and gel used most frequently
 - · Many additives are used to increase performance, however, most are manufacturer-specific secrets
 - Flammability is a concern with liquid electrolytes
- Anode
 - Negative half of a battery
 - 98% of commercially available anodes use graphite as it is cheap, has strong performance, and is easy to procure with Lithium-Titanate Oxide (LTO) composing the remaining 2%
- Cathode
 - Positive half of a battery
 - Many different types of Li oxides that are used for battery naming conventions (LFP, NMC, etc.)

LITHIUM-ION BATTERY

DISCHARGE

Example Charging Reaction:

 $\text{LiCoO}_2 \rightarrow \text{Li}_{1-x}\text{CoO}_2 + x\text{Li}^+ + xe^-, (1)$

 $6C + xLi^+ + xe^- \rightarrow Li_xC_6.$ (2)

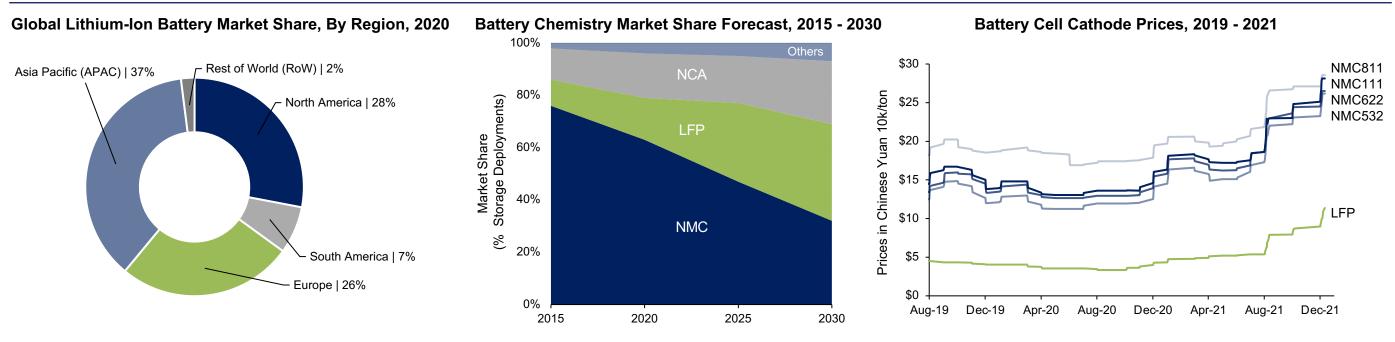
	Types of Cathode and Anode Pairings			
Cathode	Anode	Energy Density (watt-hours/kg)	Cycle Life	Applications
LFP (Lithium-Iron Phosphate)	Graphite	90 - 120	2000 - 4000	Grid-scale energy storage, EVs
LMO (Lithium-Manganese Oxide)	Graphite	100 - 150	300 - 700	Power tools, medical devices
LCO (Lithium-Cobalt Oxide)	Graphite	150 - 240	500 - 1000	Consumer electronics
NCA (Nickel-Cobalt Aluminum Oxide)	Graphite	200 - 260	500	Medical devices, Tesla EVs
NMC (Nickel-Manganese-Cobalt)	Graphite	150 - 220	1000 - 2000	EVs, industrial/medical applications, e-bikes
LMO, NMC	Lithium-Titanate Oxide (LTO)	50 - 80	3000 - 7000	UPS systems, electric powertrains

Types of Electrolytes

Liquid	Solid-State			
Lithium-based electrolyte is used which includes a solvent (organic liquid) and a solute	Inorganic Electrolytes Polymer Electrolytes (PE)			
 (dissolved salts) Advantages over solid-state electrolytes: Higher ion conductivity, easier manufacturing, less expensive 	Oxides (LATP, LiSICON, LiPON)Sulfides (Crystalline, Amorphous)Polymer-Salt Complexes (PEO—LiBF4)Gel PE (PVdF based)Composite PE (PEO-Lil- Al2O)			
Types of Separators for Liquid Electrolytes	The role of the solid-state electrolyte is to allow ion transport but prevent electron			
 Separators enable ion transport but prevent physical contact between anode and cathode Polyethylene (PE) and polypropylene (PP) are the most commonly used materials 	 conduction Li metal is a leading anode material while NMC or LFP are common cathodes Advantages over liquid electrolytes: 			

• There is ongoing research to find better materials for lithium-sulfur batteries since the physical contact prevention aspect is especially important

- Advantages over liquid electrolytes:
 - High energy density, increased safety, longer lifespan •



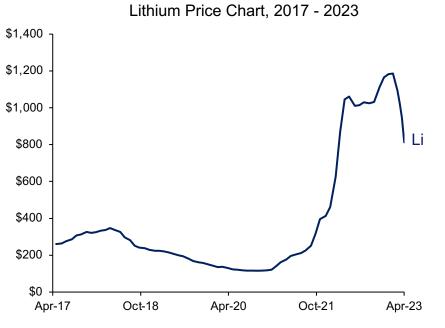
Future Battery Technology Trends

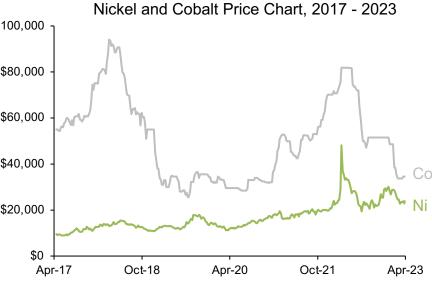
Technology	Advantages	Challenges	Time Scale
Silicon Anode	Up to 10 times higher lithium capacity than graphite, cathode agnostic, high material availability	320% swelling on cycle leads to crack growth in anode, low cycle life	Enrichment of graphite with silicon powder is already happening, full silicon anode within the decade
Dry Electrode Coating	Removes a solvent additive and drying process from manufacturing, lower cost and time	Calendaring process is harder to make fibrils with, patents	Very soon, potentially already on assembly lines
Lower Cobalt Content	Cobalt is expensive, toxic, and a strategic material, reducing it enables higher battery production	Cobalt is important for safety and performance	Trend is ongoing and will continue for for for for foreseeable future
LMNO	Cobalt free, high energy density due to high voltage operation, low theoretical cost, safe	High voltage leads to quick degradation, poor electrical conductivity	Potentially in the next decade. Much research to be done
LFP	Very safe and long lasting. Cheapest material cost so lowest cost at scale	Performance is lower than NCA, NMC	China produces large volumes of LFP, trend is ongoing
Sodium Ion	Likely will replace lead-acid, low cost	Low energy density, larger sodium ion have tougher material requirements than Li	CATL is building supply chain now
Lithium Metal Anode	Removing the graphite and using pure lithium as anode can up to double energy density	Dendrite formation leads to short cycle life, high volume change, safety issues	Depends on system, not soon
Sulfur Cathode	1,675 mAh/g theoretical capacity, very cheap	Low conductivity- carbon is added	Depends on system, not soon
Li-S	True least cost lithium battery system, theoretical energy density of 2,510 Wh/kg (more than 10x NMC) Research has found density of 1,000 Wh/kg.	Polysulfide dissolution causes poor cyclability, anode corrosion, poor conductivity, and significant volume change	Big gap between industry and academia. Discrepancy seems due to quality of materials. Unlikely within this decade
Li-Air	Theoretical energy density of 11,400 Wh/kg (excluding air). Air is free. Research has achieved 685 Wh/kg at 1000 cycles	Lab only results, cycle life is still low	Unsure. Lots of recent progress in lab, potentially could be commercialized within decade

Market Segmentation of Lithium-Ion Batteries

LFP is growing, bolstered by cell-to-pack design, cost advantage, and adoption by leading APAC and US producers

- The future of the lithium-ion battery industry is driven by the growth of electric mobility applications (26.4% CAGR) relative to applications such as consumer electronics (5.1% CAGR)
- The market for lithium-ion batteries is dominated by the Asia Pacific region (APAC)
 - APAC will grow in market share dominance as its existing EV market infrastructure will exhibit network effects
- NMC batteries have optimized to produce nickel-rich compositions that decrease reliance on cobalt
- LFP battery chemistry has been readily adopted as its cell-to-pack (CTP) design is competitive with NMC battery packs on an energy density basis, while cell-level specific energy remains
 at a significant discount¹
 - APAC is benefiting most from the LFP cost advantage, in Q1 Q3 2022, more than 85% of LFP batteries used in passenger EVs globally were in China
- Leading EV manufacturers have begun adopting LFP in their standard-range models
 - BYD, a leading Chinese EV manufacturer, commercialized its LFP Blade battery in March 2020
 - Tesla announced a switch to LFP batteries in Model 3 and Model Y vehicles in October 2021
 - Ford announced a plan in February 2023 to use LFP batteries in their late 2023 Mustang Mach-E and 2024 F-150 Lightning


Lithium, graphite, nickel, and cobalt are the underlying commodities driving lithium-ion battery pricing


Supply bottlenecks would occur from the upstream marke all demand projections	et as there are enough raw material deposits to supplement
Lithium	Graphite
30 times as much lithium would be required by the EV industry by 2040, far outpacing committed mine	 Of the raw material inputs, graphite has the highest proportion of volume in a battery cell
production Lithium extraction is largely restricted to Australia,	 China produces nearly 50% of global synthetic graphite and 70% of global flake graphite
Chile, and Argentina, with only four businesses controlling almost 60% of global production	 The majority of flake graphite processing and anode production takes place in China, creating supply
The majority of lithium exchanges are carried out over- the-counter (OTC), rather than on a lithium SPOT market	securitization risk
Nickel	Cobalt
The global demand for nickel used to produce lithium- ion batteries amounts to less than 5% of the world market for primary nickel	 Currently, cobalt presents the greatest procurement risk and is the dominant market-value contributor per unit of all battery raw material inputs
Indonesia is the largest nickel producer, accounting for	 The Democratic Republic of the Congo accounts for 69% of production and 50% of reserves, of which 80%
33% of global production and 22% of reserves	is controlled by Chinese companies

As manufacturing costs decrease, batteries become increasingly sensitive to commodities

Commodity Outlook

ŘNEF

Sources: Cowen, Nature Public Health Emergency Collection, Nature Energy, Bloomberg, Nature

Two potential narratives towards price stabilization may unfold over the next decade

- In the near term, batteries will continue to be differentiated by cathodes but anode alternatives to graphite, namely silicon or lithium-metal, may become the differentiated decision drivers
- The development of recycling technology and innovation extending battery life will likely reduce raw material requirement estimates

Price Stabilization Under Currently Commercialized Technologies

Scenario 1: Rapid price stabilization due to insufficient raw material supply

Development Timelines for Domestic Operations Upstream market pricing is likely to remain opaque Current contractual agreements are long-term and there are no definitive indications of a Beneficiation/Extraction/ Establish Resource Mineralogy **Scoping Studies** shift to a dominant SPOT market Separation Pilot Plant The lithium market lacks homogeneity as there are various purity grades and chemistries 2-5 years 1 - 3 years 1 - 3 years 2 - 10 years Vertical integration has been a common theme among leading producers • • Volkswagen acquired a 15% share of QuantumScape and a 20% share of Northvolt Feasibility Study & Environmental Construction & Letters of Intent Oligopolistic upstream market segment structure Assessments Funding Startup 80% of global supply is supplied by 5 lithium producers Concomitant with 2 - 3 years Variable 2-4 years A duration mismatch exists between the projected rise in commodity demand and the time 1-5 years needed to complete operational upstream facilities

Scenario 2: Eventual price stabilization due to a technological 'lock-in'

- Adopting a single battery technology produces increasing returns over time
 - LFP's market traction is positioned to have especially scalable returns
- Potential market disrupting technologies would be adopted after NMC or LFP technology has reached mass-market dominance
 - The cost-curve produced would be too difficult to counter
- Raw material scarcity poses a significant barrier to adoption of a single battery type and projections estimate that NMC, LFP, and NCA chemistries will maintain market share through 2030

Battery Technology Future Growth Prospects

Two potential narratives towards price stabilization may unfold over the next decade

- Forward-looking technical innovation has an emphasis on developing alternative technology that decouples BEV batteries from scarce materials
- Market disrupting technologies propose several orders of magnitude of cost savings if commercialized as point solutions

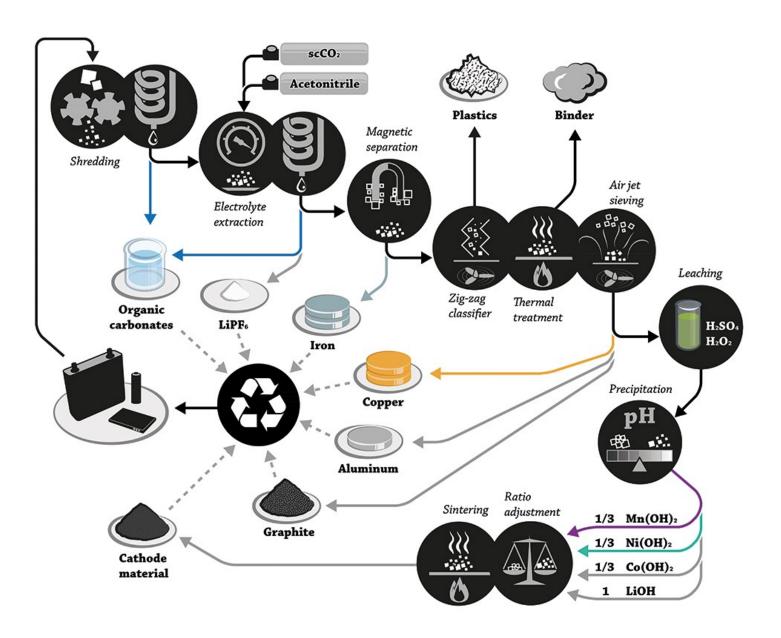
Market Disruption by New Technologies

Scenario 3: Indefinite price stabilization due to market disrupting technology

- Sodium-Ion Batteries (SIBs)
- Sodium-ion batteries have the same working principle as lithium-ion batteries, which allows them to be a point solution capable of utilizing existing infrastructure with input availability
- Competitive specific energy has not yet been developed, however, sodium batteries present several advantages including maintaining charge in colder temperatures and discharging safely to 0V
- In 2021, CATL announced plans to industrialize sodium-ion EV batteries in 2023 with a sodium-ion and lithium-ion mixed battery pack that has recently been adopted by automaker Chery
- The United States accounts for over 90% of the world's readily mined reserves for industrial sodium
- Out of 20 planned or under construction sodium battery factories, 16 are in China affording them with 95% of the world's capacity to make sodium batteries
- Solid-State Batteries (SSB)
 - Current projections indicate that solid-state batteries will not be available at an industrial scale before 2030
 - Solid-state battery technology is potentially able to easily replace the technology inside liquid electrolyte lithium-ion production lines

Raw Material Closing Price Comparison	
Cathode Material	Cost
Li ₂ CO ₃	\$69,000 USD/Ton
Na ₂ CO ₃	\$400 USD/Ton
Со	\$71,000 USD/Ton
Ni	\$23,000 USD/Ton
*As of 01/06/22	

Lithium-Ion Battery Recycling Overview


BATTERY ELECTRIC VEHICLES INDUSTRY RESEARCH

Recycling has not yet reached profitability in the United States

- Outside of the Asia Pacific region, most recycling operations are currently unprofitable
- Profitability is heavily dependent on cathode chemistries and associated raw material market pricing, as well as the relative complexity of the separation process
- As battery chemistry transitions toward LFP and away from NMC chemistry that includes expensive cobalt material inputs, the potential profitability of recycling will decrease
- EV lithium-ion batteries are retired when they reach 80% of their initial energy storage capacity but they can be reused for a second life

"The more battery designs and chemistries are heterogeneous, the more it undermines the ability to generate economies of scale in recycling processes." - Nature Journal

- By 2030, material recycling is projected to only help decrease EV costs by roughly 1%, however, material recycling presents long run benefits including roughly 10% cost savings and a 60% increase in EV uptake by 2060
- Current projections on the longevity of recycling technology hinge on the maintenance of current battery technologies into the future without the aforementioned market disruptions

The Inflation Reduction Act brings key incentives to the table

Clean Vehicle Credit (New Passenger Vehicles Only)

Battery Cell + Pack Manufacturing Credit

Advanced Manufacturing Production Credits

- Final assembly must take place in North America
- \$3,750 if an increasing percentage of the value of the battery's critical minerals are either extracted and processed in the US or a Free Trade Agreement country or recycled in North America
- Critical minerals as defined in the IRA's Section 45c(6) are aluminum, cobalt, graphite (natural and synthetic), lithium, manganese, and nickel
- 40% market-value-based target for a vehicle placed in service before 2024, 50% in 2024, 60% in 2026, 70% in 2026, and 80% in 2027+
- \$3,750 if an increasing percentage of the value of the battery's components is manufactured or assembled in North America
 - 50% market-value-based target for a vehicle placed in service before 2024, 60% in 2024-25, 70% in 2026, 80% in 2027, 90% in 2028, 100% in 2029+
- Expires for vehicles with battery components manufactured or assembled by a foreign entity of concern (i.e., China, Russia, North Korea, Iran, etc.) starting in 2024
- Expires for vehicles with battery-critical minerals extracted, processed, or recycled by a foreign entity of concern starting in 2025
- As of April 17th, only 10 models qualify for the full credit¹

Advanced Manufacturing Production Credits		
Component	Credit	Specification
Electrode Active Materials	10% of production costs	Cathode, Anode, Anode Foils, Solvents, Electrolytes
Cell	\$35 per kWh	>12 Wh of capacity and >100 Wh/L density
Module	\$10 per kWh	>7 kWh of capacity
Critical Minerals	10% of production costs	Al, Co, Li, Graphite, Mg, + more

- The advanced manufacturing production credits will phase out from 2030 to 2032
 - 75% in 2030
 - 50% in 2031
 - 25% in 2032

Commercial and Fuel Cell EV Credit

Qualifications:

- Vehicles with a gross vehicle weight rating (GVWR) below 14,000 lbs. must have a battery capacity of at least 7 kWh
- Vehicles with a GVWR above 14,000 lbs. must have a battery capacity of at least 15 kWh.
- The tax credit amount is equal to the lesser of the following amounts:
 - 15% of the vehicle purchase price for plug-in hybrid electric vehicles
 - 30% of the vehicle purchase price for EVs and FCEVs
 - The incremental cost of the vehicle compared to an equivalent internal combustion engine vehicle
- Maximum tax credits may not exceed \$7,500 for vehicles under 14,000 lbs. and \$40,000 for vehicles above 14,000 lbs.
- This tax credit cannot be combined with the Clean Vehicle Tax Credit

Battery Technology Universe

Companies are mostly private, or listed outside the US

Li Integrators		
CATL	300750.CH	
LG Energy Solutions	373220.KR	
Samsung SDI	006400.KS	
BYD Company	1121.HK	
CALB	3391.HK	
SK Innovation	096770.KS	
Tesla	TSLA	
Proterra Inc.	PTRA	
FREYR Battery SA	FREY	
Microvast Inc	MVST	

Solid Power	SLDP
QuantumScape	QS
Factorial	Private
Ionic Materials	Private
ElecJet	Private

Lithium-Metal Anode			
QuantumScape	QS		
SES.AI	SES		
Solid Power	SLDP		
Sion Power	Private		
Blue Solutions	Private		
ProLogium	Private		

	Lithium Titanate
Microvast	

Microvast	MVST
Toshiba	6502.JP
Altair Nanotechnologies	Private

	Zin
EOS Energy	

Zinc	
EOS Energy	EOSE
Urban Electric Power	Private

Silicon Anode									
Amprius	AMPX								
Enovix	ENVX								
Group 14 Technologies	Private								
Nanoramic Laboratories	Private								
OneD Battery Sciences	Private								
Sila Nanotechnologies	Private								
StoreDot	Private								

Sodium Ic	on
CATL	300750.CH
Natron Energy	Private
HiNa Battery	Private

Iron-Oxide	e
ESS Tech	GWH
Form Energy	Private

Battery Technology Financial Comps

Next generation battery manufacturers have a long journey to profitability

Next Gen Battery Ma	nufacturers		Tradin	g Data		Cash Burn			Profitability			Valuation					
Company	Category	YTD	1-Year	Short Int.	Mkt Val	Cash	FCF	Runway (Years)	Gross	EBITDA	ROIC	EV/Revenue	Rev'22	Rev'25	Rev CAGR	EV/EBITDA	EBITDA 25
FREYR	Integrator	-15%	-22%	7%	1,032	563	-269	2.1	-	-	-16%	-	0.0	279.3	-		· - <mark>123.9</mark>
Proterra	Integrator	-69%	-82%	7%	265	311	-360	0.9	-8%	-67%	-34%	0.33x	309.4	784.7	36%) -	-52.3
Microvast Holdings	Integrator/LTO	-31%	-79%	5%	328	327	-233	1.4	4%	-68%	-22%	0.86x	204.5	633.9	46%	, -	. 20.6
Solid Power A	Solid State	-9%	-71%	5%	410	323	-92	3.5	19%	-451%	-2%	8.24x	11.8	16.6	12%) -	-75.3
QuantumScape A	Solid State	35%	-51%	(15%)	3,366	1,062	-376	2.8	-	-	-27%	-	0.0	2.8	-		-293.7
SES AI A	Li-Metal Anode	-41%	-77%	1%	654	390	-61	6.4	-	-	-16%	-	0.0	50.0	-		-135.1
Eos Ener Entps A	Li-Metal Anode	43%	-12%	10%	242	20	-217	0.1	-755%	-1,153%	-255%	22.48x	17.9	269.0	147%	, -	-22.1
Enovix	Silicon Anode	6%	35%) (16%)	2,090	323	-119	2.7	-275%	-1,920%	-15%	286.21x	6.2	21.5	51%) -	-115.2
Amprius Technologies	Silicon Anode	19%	_	1%	799	74	-11	6.9	-99%	-273%	-	150.64x	4.8	22.6	67%	, -	-25.3
ESS Tech	Iron-Oxide	-56%	-80%	6%	165	141	-96	1.5	-197%	-11,503%	-45%	33.51x	0.9	226.5	533%) -	-26.8
Eos Ener Entps A	Zinc	43%	-12%	10%	242	20	-217	0.1	-755%	-1,153%	-255%	22.48x	17.9	269.0	147%) -	-22.1
Average		-7%	-45%	7%				2.6	-258%	-2,074%	-69%	65.59x			130%		. 🗸
Median		-9%	-61%	7%				2.1	-148%	-802%	-24%	22.48x			59%	, .	

Established Tier 1 S	uppliers		Tradi	ing Data			Cash B	Burn		Profitability			Valuation				
Company	Category	YTD	1-Year	Short Int.	. Mkt Val	Cash	FCF	Runway (Years)) Gross	EBITDA	ROIC	EV/Revenue	Rev'22	Rev'25	Rev CAGR	R EV/EBITDA	EBITDA '25
Contemp Amperex	Integrator/Sodium	2%	-10%	o –	- 140,512	30,842	4,286	6 7.2	2 24%	- -	19%	6 2.70x	53,664.7	79,957.2	2 14%	_ ر	12,861.6
LG Energy Solution	Integrator	23%	20%	- %	- 99,228	4,696	-5,260	0 0.9	9 16%	5 12%	4%	6 5.17x	× 19,811.6	34,247.4	4 20%	6 43.3x	5,830.2
Samsung SDI	Integrator	16%	13%	- %	- 37,829	2,449	-130	0 18.9	9 21%	5 16%	11%	6 2.57x	(15,574.7	21,455.0) 11%	6 15.8x	3,541.1
BYD H	Integrator/Auto	19%	-1%	o –	- 98,771	10,371	6,462	2 1.6	6 14%	5 10%	14%	6 1.53x	. 61,269.7	7 113,618.6	5 23%	6 16.0x	10,512.6
CALB H	Integrator	15%	/		- 4,742	1,257	-				+		-	- 11,475.6	- 6		1,324.5
SK Innovation	Integrator	10%	-21%	o –	- 12,518	8,652	-4,814	4 1.8	3 9%	5 7%	5%	. 0.47x	60,410.8	58,774.6	6 -1%	6.4x	4,554.2
Toshiba	Integrator/LTO	-6%	-18%	- %	- 14,225	2,103	-656	6 3.2	26%	6%	11%	6 0.65x	25,485.1	24,582.6	6 -1%	6 <u>11.5</u> x	1,836.4
Average		11%	-3%	% -	1			5.6	6) (18%)	10%	11%	2.18x			11%	6 18.6x	
Median		15%	-5%	- %				2.5	5 18%	10%	11%	6 2.05x			13%	<u>6 15.8x</u>	

(all figures in \$USD mm unless otherwise stated)

Microvast Holdings Inc. (MVST, \$0.96)

Learnings from our past investment in battery technology

BATTERY ELECTRIC VEHICLES INDUSTRY RESEARCH

Original Thesis

- **1.** Lucrative battery factory economics
 - IRA projections for Clarksville 2GWh facility would yield \$90m annually and CV target market remains highly viable for consumer subsidies
 - \$200m grant from DOE would cover roughly half the CAPEX requirements for separator plant
- 2. Leading technology portfolio
 - FCG Cathode, Polyaramid Separator, LTO patents and robust R&D team
 - Flagship 53.5Ah NMC Li-ion cell is highly competitive (235 Wh/kg Energy Density, >5000 Cycle Life, 48 minutes for 80% DoD)
- 3. Operational experience and sales inflection
 - Energy storage division and contract win
 - Oshkosh's 10,000 EV order to replace USPS fleet
 - 35% yoy growth in 2022 and 65% yoy growth guidance in 2023
 - Decade of experience in sales and manufacturing in Asian markets

EBITDA by 2025

Key Events

Dec 2022: Senate starts questioning DOE grant

Company Description

Li Battery integrator with novel polyaramid separator technology and specialized

\$297m market cap, \$327m cash, and two covering analysts at \$8 TP

Merged with SPAC in July 2021, raising \$822m, including \$540m PIPE

61% and 65% of revenue came from China in 2021 and 2022 respectively

Rare battery technology company without short report and positive projected

Meaningful capacity buildout in Europe and America, targeting 7 GWh and 11

October 2022: Launched energy division to focus on BESS market

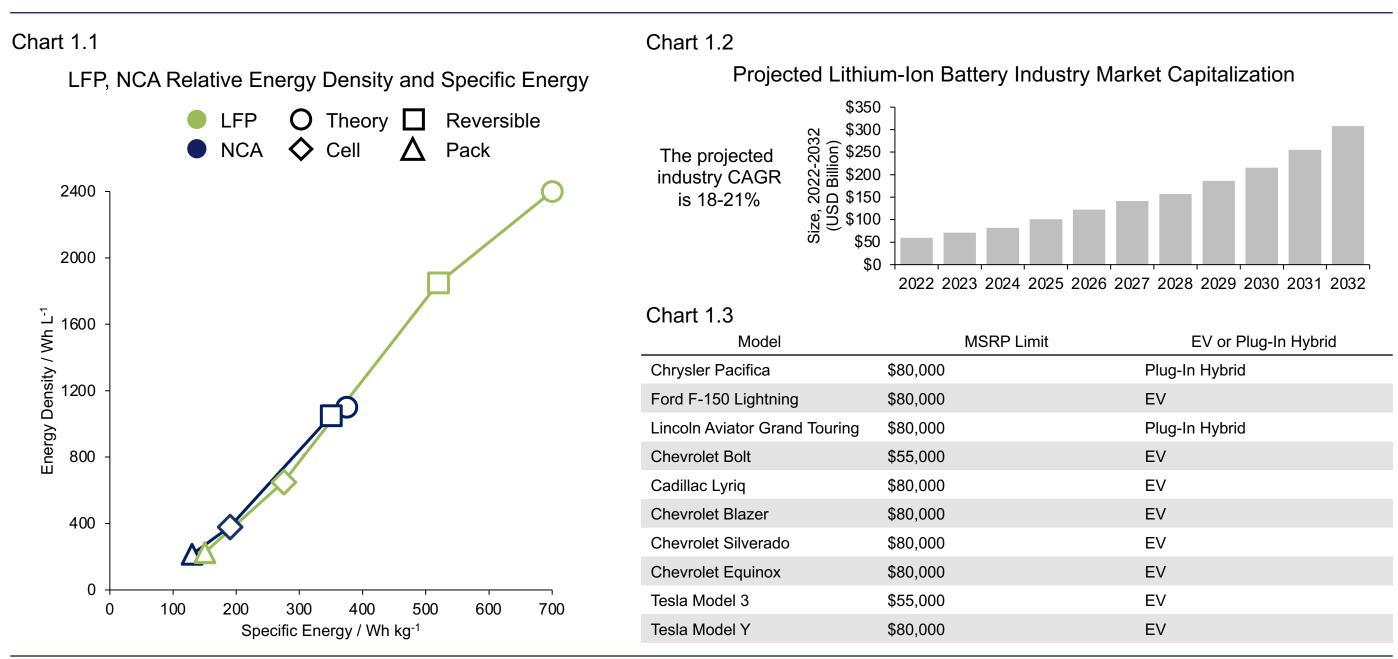
November 2022: \$200m DOE grant to produce separators with GM

December 2022: Won 1.2GWh battery energy storage project contract

experience in lithium-titanate battery design

proceeds from Oshkosh, Blackrock and Koch

GWh per year by 2023 and 2025 respectively


despite trying to reduce Chinese footprint

Jan-Feb 2023: Stock continues downward trend while QCLN recovers Mar 2023: Earnings call and email interactions make us lose faith in management Compounding value versus mispricing. Quality of management teams.

Appendix

rnef@rice.edu

© 2023 Rice New Energy Fund. All Rights Reserved.